
The Bryan-Cox-Semtner ocean
model  is a three-dimensional
model in Eulerian coordinates

(latitude, longitude, and depth).  The
incompressible Navier-Stokes equa-
tions and equations for the transport
of temperature and salinity, along
with a turbulent eddy viscosity, are
solved subject to the hydrostatic and
Boussinesq approximations.  The
model includes a rigid-lid approxima-
tion (zero vertical velocity at the
ocean surface) to eliminate fast sur-
face waves; the presence of such
waves would require use of a very
short time step in numerical simula-
tions and hence greatly increase the
computational cost.  The equations of
motion are split into two parts:  a set
of two-dimensional “barotropic”
equations describing the vertically av-
eraged flow, and a set of three-dimen-
sional “baroclinic” equations describ-
ing temperature, salinity, and devia-
tion of the horizontal velocity
components from the vertically aver-
aged flow.  (The vertical velocity
component is determined from the
constraint of mass conservation.)  The
barotropic equations contain the fast
surface waves and separate them from
the rest of the model.

The baroclinic equations are solved
explicitly; that is, their solution in-
volves a simple forward time-stepping
scheme, which is well suited to paral-
lel computing and presents no diffi-
culty on the Connection Machine.  On
the other hand, the barotropic equa-

tions (two-dimensional sparse-matrix
equations linking nearest-neighbor
grid points) must be solved implicitly;
that is, they must be solved at each
time step by iteration.  For historical
reasons the barotropic equations in
the Bryan-Cox-Semtner model are
formulated in terms of a stream func-
tion.  Such a formulation requires
solving an additional equation for
each island, an equation that links all
points around the island.  The extra
equations create vectorization diffi-
culties when the model is implement-
ed on a Cray and serious communica-
tion difficulties when it is implement-
ed on a Connection Machine because
a summation around each island is re-
quired for every iteration of the im-
plicit solver.  Therefore all but the
three largest islands had been deleted
from the original model, even though
eighty islands are resolvable at the
horizontal resolution employed (0.5
degrees latitude and longitude).  Even
so the barotropic part of the code con-
sumes about one-third of the total
computing time when the model is ex-
ecuted on a Cray and about two-thirds
of the total computing time when the
model is executed on a Connection
Machine.

The above considerations led us to
focus our efforts on speeding up the
barotropic part of the code.  We de-
veloped and implemented two new
numerical formulation of the
barotropic equations, both of which
involve a surface-pressure field rather

than a stream function.  The surface-
pressure formulations have several
advantages over the stream-function
formulation and are more efficient on
both parallel and vector computers.

The first new formulation recasts
the barotropic equations in terms of a
surface-pressure field but retains the
rigid-lid approximation.  The surface
pressure then represents the pressure
that would have to be applied to the
surface of the ocean to keep it flat (as
if capped by a rigid lid).  The
barotropic equations must still be
solved implicitly, but the boundary
conditions are simpler and much easi-
er to implement.  In addition, islands
then require no additional equations,
and therefore any number of islands
can be included in the grid at no extra
computational cost.  Furthermore, and
perhaps more important, the surface-
pressure, rigid-lid formulation, unlike
the stream-function, rigid-lid formula-
tion, exhibits no convergence prob-
lems due to steep gradients in the bot-
tom topography.  The matrix operator
in the surface-pressure formulation is
proportional to the depth field H,
whereas the matrix operator in the
stream-function formulation is pro-
portional to 1/H.  As a result, the lat-
ter matrix operator is much more sen-
sitive than the former to rapid varia-
tions in the depth of waters over the
edges of continental shelves or sub-
merged mountain ranges, where the
depth may change from several thou-
sand meters to a few tens of meters
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within a few grid points.  Because
such a rapidly varying operator may
prevent convergence to a solution,
steep gradients were removed from
the stream-function formulation by
smoothing the depth field.  The sur-
face-pressure formulation, on the
other hand, converges even in the
presence of steep depth gradients.
Smoothing of the depth field could
significantly affect the accuracy of a
numerical simulation of the interac-
tion of a strong current with bottom
topography.  For example, the detailed
course and dynamics of the Antarctic
Circumpolar Current (the strongest
ocean current in terms of total volume
transport) is greatly  influenced by its
interaction with bottom topography.

As we worked with the surface-
pressure, rigid-lid model, we noticed
a problem in shallow isolated bays
such as the Sea of Japan.  In principle,
we should have been able to infer the
elevation of the ocean surface (rela-
tive to the mean elevation) from the
predicted surface pressure.  We found,
however, that the surface heights so
inferred were quite different from
those expected due to inflow or out-
flow from the bays.  Removing the
rigid lid solved that problem, but of
course it also brought back the unde-
sirable and unneeded surface waves.
We were able to overcome that new
difficulty by treating the terms re-
sponsible for the surface waves im-
plicitly, which artificially slows down
the waves, whereas the rigid-lid ap-
proximation artificially speeds up the
waves to infinite velocity.  (Either de-
parture from reality is acceptable:
Climate modeling does not require an
accurate representation of the waves
because they have little effect on the
ocean circulation.)

Those considerations led us next to
abandon the rigid-lid approximation

in favor of a free-surface formulation.
The surface pressure is then propor-
tional to the mass of water above a
reference level near the surface.  The
benefits of the surface-pressure, free-
surface model are greater physical re-
alism and faster convergence of the
barotropic solver.  In particular, the
revised barotropic part of the code, in-
cluding eighty islands, is many times
faster than the original, including only
three islands (when both are imple-
mented on the 0.5-degree grid).  In
addition, the surface pressure is now a
prognostic variable that may be com-
pared to global satellite observations
of surface elevation to validate the
model, and satellite data may now be
assimilated into the model to improve
short-term prediction of near-surface
ocean conditions.

None of our revisions, of course,
changed the fact that the large matrix
equation in the barotropic solver must
be solved implicitly.  We chose to use
conjugate-gradient methods for that
purpose because they are both effec-
tive and easily adapted to parallel
computing. Conjugate-gradient meth-
ods are most effective when the ma-
trix is symmetric.  Unfortunately, the
presence of Coriolis terms (terms as-
sociated with the rotation of the earth)
in the barotropic equations makes the
matrix nonsymmetric. By using an ap-
proximate factorization method to
split off the Coriolis terms, we re-
tained  the accuracy of the time-dis-
cretization of the Coriolis terms and
produced a symmetric matrix to
which a standard conjugate-gradient
method may be applied.  We also de-
veloped a new preconditioning
method for use on massively parallel
computers that is very effective at ac-
celerating the convergence of the con-
jugate-gradient solution.  The method
exploits the idea of a local approxi-

mate inverse to find a symmetric pre-
conditioning matrix.  Calculating the
preconditioner is relatively expensive
but need be done only once for a
given computational grid.
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